Skip to main content

15 posts tagged with "multicloud"

View All Tags

· 2 min read

Have you received one of these?

Azure TLS Deprecation Email

Microsoft Azure is retiring TLS 1.0 and 1.1 for its services, requiring customers to transition to TLS 1.2 or later to ensure uninterrupted connectivity. If you have workloads still using older TLS versions, you’ll need to update them.

Using StackQL to Identify Non-Compliant Resources

With StackQL, you can quickly identify resources in your Azure environment that are still using older TLS versions. This article shows how to leverage StackQL queries to check various Azure services for compliance.

Prerequisites

  1. Pull the latest StackQL provider for Azure using REGISTRY PULL azure.
  2. Authenticate with Azure using StackQL by setting up your credentials as environment variables (or using your existing az login system/session authentication).

Queries to Run

Below are example queries you can use to identify resources affected by the TLS 1.2 requirement (use your subscriptionId of course):

1. Check Application Gateway Configurations

Azure Application Gateways may support older TLS versions. Run the following query to get their configurations:

SELECT
id,
name,
JSON_EXTRACT(properties, '$.sslPolicy') as ssl_policy,
JSON_EXTRACT(properties, '$.defaultPredefinedSslPolicy') as default_predefined_ssl_policy
FROM
azure.network.application_gateways
WHERE
subscriptionId = '123e4567-e89b-12d3-a456-426614174000'
AND ssl_policy IS NOT NULL
AND JSON_EXTRACT(properties, '$.sslPolicy') NOT LIKE '%TLS12%';

This query lists all Application Gateways configured with TLS versions lower than 1.2.

2. Inspect App Service Configurations

If you use Azure App Services (Web Apps), check their TLS configurations with this query:

SELECT
id,
name,
JSON_EXTRACT(properties, '$.httpsOnly') as https_only,
JSON_EXTRACT(properties, '$.siteConfig.minTlsVersion') as min_tls_version
FROM
azure.app_service.web_apps
WHERE
subscriptionId = '123e4567-e89b-12d3-a456-426614174000'
AND JSON_EXTRACT(properties, '$.siteConfig.minTlsVersion') < '1.2';

This returns all web apps that allow connections using TLS versions older than 1.2.

3. Check SQL Server Instances

Azure SQL Databases and SQL Managed Instances may also have TLS configurations that need checking:

SELECT
location,
fully_qualified_domain_name,
minimal_tls_version,
state
FROM
azure.sql.vw_servers
WHERE
subscriptionId = '123e4567-e89b-12d3-a456-426614174000'
AND minimal_tls_version < '1.2';

This shows all SQL servers with a minimal TLS version set below 1.2.

We’d love to hear your feedback. ⭐ us on GitHub and let us know how StackQL helps you manage your Azure resources!

· One min read

New versions of the azure providers for stackql are available now in the stackql-provider-registry.

Summary stats for the main azure provider:

Total Services196
Total Resources4,020
Total Methods11,160

New versions of the azure_extras, azure_isv and azure_stack providers are available as well.

New services available include:

  • Microsoft Entra Verified ID
  • Database Watcher for Azure SQL
  • Azure Compute Fleet
  • Azure Edge Zones
  • Azure Standby Pools
  • Informatica Intelligent Data Management Cloud
  • MongoDB Atlas on Azure
  • Oracle Database Service for Azure
  • Split Feature Data Platform

Let us know what you think! ⭐ us on GitHub.

· 3 min read

StackQL allows you to query and interact with your cloud and SaaS assets using a simple SQL framework. Use cases include CSPM, asset inventory and analysis, finops and more, as well as our IaC and ops (lifecycle management).

The three major cloud providers all offer a built-in Linux shell for executing commands using their respective CLIs; in some cases, they come with tools like terraform pre-installed. They are pre-authorized with your credentials in the cloud console for the user you authenticated with.

Now you can easily use stackql - a unified analytics and IaC dev tool - in all major cloud providers' built-in shells, using cloud shell scripts packaged with the stackql Linux binary (available from v0.5.587 onwards).

StackQL is particularly useful for asynchronously querying across regions in AWS, projects in Google, or resource groups in Azure, which is challenging to do via the CLIs. For example:

SELECT region, COUNT(*) as num_functions
FROM aws.lambda.functions
WHERE region IN (
'us-east-1','us-east-2','us-west-1','us-west-2',
'ap-south-1','ap-northeast-3','ap-northeast-2',
'ap-southeast-1','ap-southeast-2','ap-northeast-1',
'ca-central-1','eu-central-1','eu-west-1',
'eu-west-2','eu-west-3','eu-north-1','sa-east-1')
GROUP BY region;

Additionally, you could authenticate to another provider from one cloud shell simultaneously and run multi-cloud inventory commands. For example:

SELECT 
name,
SPLIT_PART(machineType, '/', -1) as instance_type,
'google' as provider
FROM google.compute.instances
WHERE project IN ('myproject1','myproject2')
UNION
SELECT
instanceId as name,
instanceType as instance_type,
'aws' as provider
FROM aws.ec2.instances
WHERE region IN (
'us-east-1','us-east-2','us-west-1','us-west-2',
'ap-south-1','ap-northeast-3','ap-northeast-2',
'ap-southeast-1','ap-southeast-2','ap-northeast-1',
'ca-central-1','eu-central-1','eu-west-1',
'eu-west-2','eu-west-3','eu-north-1','sa-east-1');

Getting Started

To get started with StackQL in your preferred cloud shell environment, download the StackQL package using the following command:

curl -L https://bit.ly/stackql-zip -O \
&& unzip stackql-zip

This command downloads the StackQL package, unzips it, and sets the appropriate permissions. From there, you can use our tailored scripts for AWS, Google Cloud, or Azure to integrate StackQL seamlessly into your cloud shell environment.

Using StackQL in the AWS Cloud Shell

Run the stackql-aws-cloud-shell.sh as follows to use the StackQL command shell within the AWS cloud shell:

sh stackql-aws-cloud-shell.sh

An example is shown here:

aws-cloud-shell-example

You can also run stackql exec commands using the stackql-aws-cloud-shell.sh script; for instance, this command will write a CSV file for the results of a query that could be downloaded from the Cloud Shell.

sh stackql-aws-cloud-shell.sh exec \
--output csv --outfile instances.csv \
"SELECT region, instanceType FROM aws.ec2.instances WHERE region IN ('us-east-1')"

Additionally, you can supply an IAM role using the --role-arn argument to assume another role for your query or mutation operation, an example is shown here:

sh stackql-aws-cloud-shell.sh \
--role-arn arn:aws:iam::824532806693:role/SecurityReviewerRole exec \
--infile query.iql \
--output csv --outfile output.csv

Using StackQL in the Azure Cloud Shell

Run the stackql-azure-cloud-shell.sh as follows to open a StackQL command shell from the Azure Cloud Shell:

sh stackql-azure-cloud-shell.sh

An example is shown here:

azure-cloud-shell-example

Similar to the AWS script, you can also invoke stackql exec as well, an example is shown here:

sh stackql-azure-cloud-shell.sh exec \
--output csv --outfile instances_by_location.csv \
"SELECT location, COUNT(*) as num_instances FROM azure.compute.virtual_machines WHERE resourceGroupName = 'stackql-ops-cicd-dev-01' AND subscriptionId = '631d1c6d-2a65-43e7-93c2-688bfe4e1468' GROUP BY location"

Using StackQL in the Google Cloud Shell

Run the stackql-google-cloud-shell.sh as shown below to launch a StackQL command shell from within the google cloud shell:

sh stackql-google-cloud-shell.sh

An example is shown here:

google-cloud-shell-example

As with the other two providers, you can run exec commands following the example below:

sh stackql-google-cloud-shell.sh exec \
--output csv --outfile instances.csv \
"SELECT name, status FROM google.compute.instances WHERE project = 'stackql-demo'"

Please give us your feedback! Star us at github.com/stackql.

· One min read

StackQL allows you to query and interact with your cloud and SaaS assets using a simple SQL framework. Use cases include CSPM, asset inventory and analysis, finops and more, as well as our IaC and ops (lifecycle management).

Excited to announce the general availability of the latest StackQL providers for Azure. Includes expanded resource and method coverage including all of the latest Resource Manager services. The StackQL Azure provider catalog now includes:

  • azure - core Azure RM services
  • azure_extras - additional Azure services
  • azure_isv - Azure Native ISV software and services (like Databricks, Datadog, Confluent, Astro and more)
  • azure_stack - Azure Hybrid app framework

by the numbers...

ProviderTotal ServicesTotal MethodsTotal Resources
azure195138413920
azure_extras381164339
azure_isv20906253
azure18470142

More Data Plane services like Azure Container Registry coming as well, stay tuned!

· 6 min read

This exercise will show you how to run a real-time query across your AWS and Google cloud environments. You may do this for inventory analysis, security analysis, or any other reason you can think of. We will use stackql to query the state of your cloud resources across your AWS and Google environments. You can also use stackql to provision, de-provision or manage resources across different cloud and SaaS providers.

The steps we will take are:

  1. Prepare your environment for stackql usage.
  2. Use stackql to provision some resources in cloud. optional
  3. Use stackql to query resources present in the cloud.
  4. Use stackql to tear down resources created in step (2), if any. Important: you must destroy any resources created through this exercise, or you will incur ongoing charges.

Preparation

For this exercise, credentials with privileges against google and aws are required. It is outside the scope of this document to go into great detail on the various topics and options relevant to this. Instead, the below steps provide both: (i) reference to vendor documentation and (ii) suggestions for workarounds to get yourself going.

for old hands

All the materials required for this exercise are:

  1. A current stackql executable.
  2. A Google Service Account Key JSON file, where the corresponding Service Account possesses permissions sufficient to create, interrogate and delete compute block storage.
  3. AWS credentials stored in the traditional AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables, where the corresponding Service Account possesses permissions sufficient to create, interrogate and delete ec2 block storage.

step by step

First, please do the following:

  1. Download and install stackql from our website.
  2. For google:
    • (i) Create and download a Google Service Account Key as per Google documentation. Remember the location of your key file.
    • (ii) You will need to grant the Service Account at least read, list, create, and delete privileges. For more information about google iam and Service Accounts in particular, please consult the documentation. For this exercise, grant your service account the roles/compute.storageAdmin role would be adequate.
  3. For AWS:
    • (i) Create and download AWS user credentials as per AWS documentation. We will require long-lived credentials. In keeping with vendor advice, we strongly recommend against using root user credentials. We have created a dedicated CICD user for this exercise.
    • (ii) Set up the AWS CLI environment variables as per the documentation.
    • (iii) The user will need create / read / delete privileges against ec2 volumes. This can be done though the AWS IAM console in various ways. For example, one can use groups and permission policies. Adding your user to a group with AmazonEC2FullAccess will certainly work, although lesser privileges may be adequate.

Then, create some shell variables:

# you will need to edit the file path as appropriate

GOOGLE_DOWNLOADED_KEY_FILE_PATH="/path/to/your/downloaded/key.json"

AWS_AUTH_FRAGMENT='{ "type": "aws_signing_v4", "credentialsenvvar": "AWS_SECRET_ACCESS_KEY", "keyIDenvvar": "AWS_ACCESS_KEY_ID" }'

GOOGLE_AUTH_FRAGMENT='{ "credentialsfilepath": "'"${GOOGLE_DOWNLOADED_KEY_FILE_PATH}"'", "type": "service_account" }'

export STACKQL_AUTH_CTX='{ "aws": '"${AWS_AUTH_FRAGMENT}"', "google": '"${GOOGLE_AUTH_FRAGMENT}"' }'
Setting up Provider Auth in PowerShell
$GOOGLE_DOWNLOADED_KEY_FILE_PATH = "C:\path\to\your\downloaded\key.json"

$AWS_AUTH_FRAGMENT = '{ "type": "aws_signing_v4", "credentialsenvvar": "AWS_SECRET_ACCESS_KEY", "keyIDenvvar": "AWS_ACCESS_KEY_ID" }'

$GOOGLE_AUTH_FRAGMENT = '{ "credentialsfilepath": "' + $GOOGLE_DOWNLOADED_KEY_FILE_PATH + '", "type": "service_account" }'

$env:STACKQL_AUTH_CTX = '{ "aws": ' + $AWS_AUTH_FRAGMENT + ', "google": ' + $GOOGLE_AUTH_FRAGMENT + ' }'

Start a stackql shell session

To start an interactive shell session, in the same shell you setup your envrioment variables, run:

stackql --auth="${STACKQL_AUTH_CTX}" shell

You can exit at any time with ctrl + C.

Setup and meta queries to get started

StackQL providers are installed from the StackQL Provider Registry using the REGISTRY command. StackQL supports meta queries such as SHOW and DESCRIBE which can be used to explore the available services, resources, fields, and operations available in a given cloud or SaaS provider.

-- see available providers
registry pull list;

-- pull the required providers
registry pull google;

registry pull aws;

-- some the installed providers
show providers;

-- some meta queries
show services in google;

show resources in google.compute;

describe google.compute.disks;

Create block storage (optional)

You will need to replace the items in <ANGLE_BRACKETS>.

-- create a google volume, await and verify creation completes successfully
insert /*+ AWAIT */ into google.compute.disks(
project,
zone,
data__name,
data__sizeGb
)
select
'<YOUR_GCP_PROJECT>',
'australia-southeast1-a',
'my-stackql-demo-disk-01',
'10' ;

-- create an aws volume, operation despatched on a BEST EFFORT basis
insert into aws.ec2.volumes(
AvailabilityZone,
Size,
region)
select
'ap-southeast-2a',
10,
'ap-southeast-2';

Interrogate cloud block storage


-- query one resource from google
select
name,
split_part(split_part(type, '/', 11), '-', 2) as type,
status,
sizeGb as size
from google.compute.disks
where project = '<YOUR_GCP_PROJECT>'
and zone = 'australia-southeast1-a';

-- query the equivalent from aws
select
volumeId as name,
volumeType as type,
status,
size
from aws.ec2.volumes
where region = 'ap-southeast-2';

-- union the equivalent resources across clouds
select
'google' as vendor,
name,
split_part(split_part(type, '/', 11), '-', 2) as type,
status,
sizeGb as size
from google.compute.disks
where project = '<YOUR_GCP_PROJECT>'
and zone = 'australia-southeast1-a'
union
select
'aws' as vendor,
volumeId as name,
volumeType as type,
status,
size
from aws.ec2.volumes
where region = 'ap-southeast-2';

-- create a view for convenience
create view dual_cloud_block_storage as
select
'google' as vendor,
name,
split_part(split_part(type, '/', 11), '-', 2) as type,
status,
sizeGb as size
from google.compute.disks
where project = '<YOUR_GCP_PROJECT>'
and zone = 'australia-southeast1-a'
union
select
'aws' as vendor,
volumeId as name,
volumeType as type,
status,
size
from aws.ec2.volumes
where region = 'ap-southeast-2';

-- select from the newly created view, with ordering
select * from dual_cloud_block_storage order by name desc;

Delete block storage (if required)

This will only work if the disks are deletable. For example, aws.ec2.volumes must have status = available; you can check this with the view we created above.

/* delete a google volume, await and verify creation completes successfully.
One at a time only... */
delete /*+ AWAIT */ from google.compute.disks
where project = '<YOUR_GCP_PROJECT>'
and zone = 'australia-southeast1-a'
and disk = 'my-stackql-demo-disk-01';

-- delete an aws volume, operation despatched on a BEST EFFORT basis
delete from aws.ec2.volumes
where VolumeId = 'vol-049ee07b31aff451a'
and region = 'ap-southeast-2';

Verify the cleanup was successful

select * from dual_cloud_block_storage order by name desc;

That's it for the scripted demo!

Get involved

We Need Your Help!

if you find bugs, want features, have tech questions then go to github.com/stackql/stackql/issues and raise the appropriate issue 🙏